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Abstract: Existing solutions to visual simultaneous localization and mapping (V-
SLAM) assume that errors in feature extraction and matching are independent and
identically distributed (i.i.d), but this assumption is known to not be true – features
extracted from low-contrast regions of images exhibit wider error distributions
than features from sharp corners. Furthermore, V-SLAM algorithms are prone to
catastrophic tracking failures when sensed images include challenging conditions
such as specular reflections, lens flare, or shadows of dynamic objects. To address
such failures, previous work has focused on building more robust visual frontends,
to filter out challenging features. In this paper, we present introspective vision
for SLAM (IV-SLAM), a fundamentally different approach for addressing these
challenges. IV-SLAM explicitly models the noise process of reprojection errors
from visual features to be context-dependent, and hence non-i.i.d. We introduce an
autonomously supervised approach for IV-SLAM to collect training data to learn
such a context-aware noise model. Using this learned noise model, IV-SLAM
guides feature extraction to select more features from parts of the image that are
likely to result in lower noise, and further incorporate the learned noise model into
the joint maximum likelihood estimation, thus making it robust to the aforemen-
tioned types of errors. We present empirical results to demonstrate that IV-SLAM
1) is able to accurately predict sources of error in input images, 2) reduces tracking
error compared to V-SLAM, and 3) increases the mean distance between tracking
failures by more than 70% on challenging real robot data compared to V-SLAM.
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Visual simultaneous localization and mapping (V-SLAM) extracts features from observed images,
and identifies correspondences between features across time-steps. By jointly optimizing the re-
projection error of such features along with motion information derived from odometry or inertial
measurement units (IMUs), V-SLAM reconstructs the trajectory of a robot along with a sparse 3D
map of the locations of the features in the world. To accurately track the location of the robot and
build a map of the world, V-SLAM requires selecting features from static objects, and correctly and
consistently identifying correspondences between features. Unfortunately, despite extensive work on
filtering out bad features [1, 2, 3] or rejecting unlikely correspondence matches [4, 5, 6], V-SLAM
solutions still suffer from errors stemming from incorrect feature matches and features extracted from
moving objects. Furthermore, V-SLAM solutions assume that re-projection errors are independent
and identically distributed (i.i.d), an assumption that we know to be false: features extracted from
low-contrast regions or from regions with repetitive textures exhibit wider error distributions than
features from regions with sharp, locally unique corners. As a consequence of such assumptions, and
the reliance on robust frontends to filter out bad features, even state of the art V-SLAM solutions suffer
from catastrophic failures when encountering challenging scenarios such as specular reflections, lens
flare, and shadows of moving objects encountered by robots in the real world.

We present introspective vision for SLAM (IV-SLAM), a fundamentally different approach for
addressing these challenges – instead of relying on a robust frontend to filter out bad features, IV-
SLAM builds a context-aware total noise model [7] that explicitly accounts for heteroscedastic noise,
and learns to account for bad correspondences, moving objects, non-rigid objects and other causes of

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.



errors. IV-SLAM is capable of learning to identify causes of V-SLAM failures in an autonomously
supervised manner, and is subsequently able to leverage the learned model to improve the robustness
and accuracy of tracking during actual deployments. Our experimental results demonstrate that IV-
SLAM 1) is able to accurately predict sources of error in input images as identified by ground truth
in simulation, 2) reduces tracking error on both simulation and real-world data, and 3) significantly
increases the mean distance between tracking failures when operating under challenging real-world
conditions that frequently lead to catastrophic tracking failures of V-SLAM.

1 Related Work

There exists a plethora of research on designing and learning distinctive image feature descriptors.
This includes the classical hand-crafted descriptors such as ORB [8] and SIFT [9], as well as the more
recent learned ones [10, 11, 12, 5, 6] that rely on Siamese and triplet network architectures to generate
a feature vector given an input image patch. Selecting interest points on the images for extracting
these descriptors is traditionally done by convolving the image with specific filters [13] or using
first-order approximations such as the Harris detector. More recently, CNN approaches have become
popular [14, 15]. Cieslewski et al. [16] train a network that given an input image outputs a score map
for selecting interest points. Once features are extracted at selected keypoints, pruning out a subset
of them that are predicted to be unreliable is done in different ways. Alt et al. [1] train a classifier
to predict good features at the descriptor level, and Wang and Zhang [2] use hand-crafted heuristics
to determine good SIFT features. Carlone and Karaman [3] propose a feature pruning method for
visual-inertial SLAM that uses the estimated velocity of the camera to reject image features that are
predicted to exit the scene in the immediate future frames. A line of work leverages scene semantic
information in feature selection. Kaneko et al. [17] run input images through a semantic segmentation
network and limit feature extraction to semantic classes that are assumed to be more reliable such
as static objects. Ganti and Waslander [18] follow a similar approach while taking into account the
uncertainty of the segmentation network in their feature selection process. While these approaches
benefit from using the contextual information in the image, they are limited to hand-enumerated lists
of sources of error. Moreover, not all potential sources of failure can be categorized in one of the
semantic classes, for which well-trained segmentation networks exist. Repetitive textures, shadows,
and reflections are examples of such sources. Pruning bad image correspondences once features are
matched across frames is also another active area of research. Forward predicting the motion of the
robot by means of accurate learned motion models [19] reduces outliers to some extent by limiting
the region in the image, where the corresponding match for each feature can lie. The remaining
wrong correspondences have traditionally been addressed with RANSAC [20], and more recently
deep learning approaches have been developed [21, 22], which use permutation-equivariant network
architectures and predict outlier correspondences by processing coordinates of the pairs of matched
features. While the goal of these methods is to discard outlier correspondences, not all bad matches
are outliers. There is also a grey area of features that for reasons such as specularity, shadows, motion
blur, etc., are not located as accurately as other features without clearly being outliers.

Our work is agnostic of the feature descriptor type and the feature matching method at hand. It is
similar to the work by Cieslewski et al. [16] in that it learns to predict unreliable regions for feature
extraction in a self-supervised manner. However, it goes beyond being a learned keypoint detector
and applies to the full V-SLAM solution by exploiting the predicted feature reliability scores to
generate a context-aware loss function for the bundle adjustment problem. Unlike available methods
for learning good feature correspondences, which require accurate ground truth poses of the camera
for training [21, 22, 4], our work only requires rough estimates of the reference pose of the camera.
IV-SLAM is inspired by early works on introspective vision [23, 24] and applies the idea to V-SLAM.

2 Visual SLAM

In visual SLAM, the pose of the camera Tw
t ∈ SE(3) is estimated and a 3D map M =
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of the environment is built by finding correspondences in the image space
across frames. For each new input image It (or stereo image pair (It,l, It,r ), image features are
extracted and matched with those from previous frames. Then, the solution to SLAM is given by
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bound for the covariance of the reference SLAM solution. A χ2 test with α = 0.05 is done for dt and
if it fails, the current frame will be flagged as unreliable and a training label will not be generated
for it. At each frame Kt recognized as reliable for training data labeling, reprojection error values
ǫt,k are calculated for all matched image features. A normalized cost value ct,k = ǫ

T
t,k
Σ
−1
t,k
ǫt,k is then

computed for each image feature, where Σt,k denotes the diagonal covariance matrix associated with
the scale at which the feature has been extracted. The set of sparse cost values calculated for each
frame is then converted to a costmap Ict the same size as the input image. This is achieved using
a Gaussian Process regressor. The generated costmaps along with the input images are then used
to train the introspection function using a stochastic gradient descent (SGD) optimizer and a mean
squared error loss (MSE) that is only applied to the regions of the image where the uncertainty of the
output of the GP is lower than a threshold. Figure 2 shows the estimated costmap and the uncertainty
mask for an example input image.

The advantage of such a self-supervised training scheme is that it removes the need for highly accurate
ground truth poses of the camera, which would have been necessary if image features were to be
evaluated by common approaches such as the epipolar error across different frames.

3.2 Robust Estimation in IV-SLAM

During inference, input images are run through the introspection function I to obtain the estimated

costmaps Îct
. IV-SLAM uses Îct

to both guide the feature extraction process and adjust the contribu-
tion of extracted features when solving for Tw

1:t
and M.

Guided feature extraction. Each image It is divided into equally sized cells and the maximum
number of image features to be extracted from each cell Ck is determined to be inversely proportional

to
∑

(i, j)∈Ck
Îct
(i, j), i.e. the sum of the corresponding costmap image pixels within that cell. This

helps IV-SLAM prevent situations where the majority of extracted features in a frame are unreliable.

Reliability-aware bundle adjustment. Extracted features from the input image are matched
with map points, and for each matched image feature zt,k extracted at pixel location (i, j), a specific
loss function Lδ(zt,k ) is generated as defined in Eq. 4. The loss function parameter δ(zt,k) ∈ [0, δmax]

is approximated as
1−ĉt,k
1+ĉt,k

δmax, where ĉt,k = Îct
(i, j) ∈ [0,1] and δmax is a positive constant and a

hyperparameter that defines the range at which δ(zt,k) can be adjusted. We pick δmax to be the

χ2 distribution’s 95th percentile, i.e. 7.82 for a stereo observation. In other terms, for each image
feature, the Huber loss is adjusted such that the features that are predicted to be less reliable (larger
ct,k) have a less steep associated loss function (smaller δ(zt,k)). Lastly, the tracked features along
with their loss functions are plugged into Eq. 3 and the solution to the bundle adjustment problem,
i.e. the current pose of the camera as well as adjustments to the previously estimated poses and the
location of map points, are estimated using a nonlinear optimizer.

4 Experimental Results

In this section: 1) We evaluate IV-SLAM on how well it predicts reliability of image features
(Section 4.2). 2) We show that IV-SLAM improves tracking accuracy of a state-of-the-art V-SLAM
algorithm and reduces frequency of its tracking failures (Section 4.3). 3) We look at samples of
sources of failure learned by IV-SLAM to negatively affect V-SLAM. (Section 4.4). To evaluate
IV-SLAM, we implement it on top of the stereo version of ORB-SLAM [30]. We pick ORB-SLAM
because it has various levels of feature matching pruning and outlier rejection in place, which
indicates that the remaining failure cases that we address with introspective vision cannot be resolved
with meticulously engineered outlier rejection methods.

4.1 Experimental Setup

State-of-the-art vision-based SLAM algorithms have shown great performance on popular benchmark
datasets such as [31] and EuRoC [32]. These datasets, however, do not reflect the many difficult
situations that can happen when the robots are deployed in the wild and over extended periods of
time [33]. In order to assess the effectiveness of IV-SLAM on improving visual SLAM performance,
in addition to evaluation on the public EuRoC and KITTI datasets, we also put IV-SLAM to test
on simulated and real-world datasets that we have collected to expose the algorithm to challenging
situations such as reflections, glare, shadows, and dynamic objects.
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Table 1: Tracking Accuracy in the KITTI

Dataset

IV-SLAM ORB-SLAM

Sequence
Trans.
Err. %

Rot. Err.
(deg/100m)

Trans.
Err. %

Rot. Err.
(deg/100m)

00 0.69 0.25 0.69 0.25
01 1.43 0.22 1.47 0.22
02 0.79 0.22 0.76 0.24
03 0.74 0.19 0.70 0.23
04 0.49 0.13 0.55 0.13
05 0.40 0.16 0.38 0.16
06 0.49 0.14 0.56 0.19
07 0.49 0.27 0.49 0.29
08 1.02 0.31 1.05 0.31
09 0.85 0.25 0.82 0.25
10 0.61 0.26 0.62 0.29

Average 0.77 0.24 0.77 0.25

Table 2: Tracking Accuracy in the EuRoC

Dataset

IV-SLAM ORB-SLAM

Sequence
Trans.
Err. %

Rot. Err.
(deg/m)

Trans.
Err. %

Rot. Err.
(deg/m)

MH1 2.26 0.19 2.42 0.21
MH2 1.78 0.18 1.49 0.16
MH3 3.27 0.18 3.27 0.17
MH4 3.85 0.16 3.49 0.15
MH5 2.98 0.16 3.32 0.18
V1_1 8.93 1.05 8.85 1.06
V1_2 4.38 0.41 4.46 0.39
V1_3 7.85 1.24 14.86 2.35
V2_1 2.92 0.76 4.37 1.39
V2_2 2.89 0.62 2.76 0.59
V2_3 11.00 2.49 12.73 2.39

Average 4.74 0.68 5.64 0.82

Table 3: Aggregate Results for Simulation and Real-world Experiments

Real-World Simulation

Method Trans. Err. % Rot. Err. (deg/m) MDBF (m) Trans. Err. % Rot. Err. (deg/m) MDBF (m)

IV-SLAM 5.85 0.511 621.1 12.25 0.172 450.4
ORB-SLAM 9.20 0.555 357.1 18.20 0.197 312.7

Given the lack of challenging scenes in this dataset, IV-SLAM performs similar to ORB-SLAM with
only marginal improvement in the overall rotational error. While EuRoC is more challenging than
the KITTI given the higher mean angular velocity of the robot, the only tracking failure happens
in the V2_3 sequence and similarly for both ORB-SLAM and IV-SLAM due to severe motion
blur. IV-SLAM performs similar to ORB-SLAM on the easier trajectories, however, it significantly
reduces the tracking error on the more challenging trajectories such as V1_3. Over all the sequences,
IV-SLAM improves both the translational and rotational tracking accuracy.

Challenging datasets. We also evaluate IV-SLAM on the simulation and real-world datasets
introduced in Section 4.1, which include scenes that are representative of the challenging scenarios
that can happen in the real-world applications of V-SLAM. Given the larger scale of the environment,
and faster speed of the robot in the simulation dataset, we pick dR = 2m for the real-world environment
and dS = 20m for the simulation. Figures 4 and 5 compare the per trajectory tracking error values as
well as the tracking failure count for IV-SLAM and ORB-SLAM in both experimental environments.
Table 3 summarizes the results and shows the RMSE values calculated over all trajectories. The
results show that IV-SLAM leads to more than 70% increase in the mean distance between failures
(MDBF) and a 35% decrease in the translation error in the real-world dataset. IV-SLAM similarly
outperforms the original ORB-SLAM in the simulation dataset by both reducing the tracking error
and increasing MDBF. As it can be seen numerous tracking failures happen in both environments
and the overall error rates are larger than those corresponding to the KITTI and EuRoC datasets due
to the more difficult nature of these datasets. It is noteworthy that the benefit gained from using
IV-SLAM is also more pronounced on these datasets with challenging visual settings.

4.4 Qualitative Results

In order to better understand how IV-SLAM improves upon the underlying SLAM algorithm, and
what it has learned to achieve the improved performance, we look at sample qualitative results.
Figure 7 demonstrates example deployment sessions of the robot from the real-world dataset and
compares the reference pose of the camera with the estimated trajectories by both algorithms under
test. It shows how image features extracted from the shadow of the robot and surface reflections cause
significant tracking errors for ORB-SLAM, while IV-SLAM successfully handles such challenging
situations. Figure 6 illustrates further potential sources of failure picked up by IV-SLAM during
inference, and demonstrates that the algorithm has learned to down-weight image features extracted
from sources such as shadow of the robot, surface reflections, lens flare, and pedestrians in order to
achieve improved performance.
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